
Towards Non-Parametric Bayesian Learning of Robot Behaviors
from Demonstration

Stéphane Magnenat, Cédric Pradalier, and Francis Colas

Problem Statement

Real-world robotic applications typically require basic actions:

Grasping an object, docking to a recharge station, etc.

Typically uses FSM: slow to program, to debug, to tune.

We want to specify these actions by demonstrating them:

Trajectory following replay (ex. GMR) are typically reactive.

Sequence segmentation demands a definition of step changes.

Both approches require many parameters/design choices.

Experiments

15 cm

20 cm

25 cm

20 recorded trajectories (black dots), 3 × 5 different tested positions (blue)

θτ=0.05, 7 different tested values for θI

Results

with 20 demonstrations:

θI S Fs Fg Fb

1e-0.5 14 1 0 0
1e-1 13 1 0 1
1e-1.5 13 0 1 1
1e-2 14 0 1 1
1e-2.5 7 6 1 1
1e-3 11 2 2 0
1e-4 9 5 0 1

with 6 demonstrations:

1e-0.5 11 3 1 0

●

●●●

●●

●

0.
5

1.
0

1.
5

2.
0

2.
5

al
ig

nm
en

t e
rr

or
 [m

m
]

1e−4 1e−3 1e−2 1e−1

10
0

10
5

11
0

11
5

du
ra

tio
n

[s
]

θI

For θI comprised between 1e-0.5 and 1e-2, the success rate is high at 90 %.

A large θI is better because training runs differ mostly at the beginning.

In case of success, the alignment error is small and the duration constant.

Most of the failures (60 %) are linked to the controller stopping the robot
indefinitely, due to a fixed or cyclic distribution on It, τt.

With only 6 recorded trajectories, performances degrade gracefully: there
are more failures but on successful runs mean error and duration are similar.

Example of Model Execution

τ 0 1 2

Sl 0 1 1
Sr 0 0 0
M→→↗
τ 0 1 2

Sl 0 0 0
Sr 0 1 1
M→→↘

step phase robot obs. latent cmd

0 init.

1 trans. →
1 obs.

2 trans. →
2 obs.

3 trans. ↗
3 obs.

Current and Future Work

Test on search-and-rescue robot, PR2

Observation model (Cauchy) and transition model (Log-normal)

Sensor weighting (feature selection)

Abstraction (similar subsequences, loops, branching)

Conclusion

Real-time on laptop in Python/Cython, complexity: O(L× N)

Successful application to cube grasping

Strong potential for other types of robots

Proposed Model

Execution based on tracking in the training data.

Observations and commands are conditioned by trajectory and time indices.

Updates this latent space with observations and transition models.

Generates commands by averaging recorded motor data.

Variables

Π = {ζ it, υit|∀i ∈ (1,N),∀t ∈ (1, Li)} Records of N trajectories; trajectory
i at record time step t has sensor data ζ it and actuator command υit.

It Index of trajectory at replay time t, ranges from 1 to N .

τt Position on trajectory at replay time t, ranges from 1 to maxi Li .

Ut Actuator command at replay time t, vector value.

Zt Observation (sensor data) at replay time t, ns-dim vector value.

Distributions

I0, τ0 I1, τ1

U1

Z1

I2, τ2

U2

Z2

It, τt

Ut

Zt

p(U1:t,Z1:t, I1:t, τ1:t) =

p(U1:t−1,Z1:t−1, I1:t−1, τ1:t−1)p(Ut|It, τt)p(Zt|It, τt)p(It|It−1)p(τt|τt−1)

Parameters

The model has only number of sensors + 2 meta parameters:

θI : how much trajectories can change,

θτ : how much time can get stretched,

σζk: for each sensor, indicates when two values are different.

Observation model

p(Zt|It = i , τt = j) =∏
k

[∫ ζ ij

ζ ij−1

1

2(ζ ij − ζ ij−1)k
N (t, σ2

ζk)dt +

∫ ζ ij+1

ζ ij

1

2(ζ ij+1 − ζ ij)k
N (t, σ2

ζk)dt

]

Transition model

p(τt|τt−1) =

θτ if τt = τt−1

1− 2θτ if τt = τt−1 + 1
θτ if τt = τt−1 + 2
0 otherwise

alternatively, a Log-normal distribution

p(It|It−1) =

{
1− θI if It = It−1

θI
N−1 otherwise

Initial conditions and termination criterion

p(I0 = i , τ0 = j) =

{
1/N if j = 0

0 otherwise

The task is considered completed if p(τt in last 10 time steps) > 0.9.

Questions

Update due to time, involving the prediction model:

p(It, τt|Z1:t−1) =
∑

It−1,τt−1

p(It, τt|It−1, τt−1)p(It−1, τt−1|Z1:t−1)

=
∑
It−1

p(It|It−1)p(It−1|Z1:t−1)
∑
τt−1

p(τt|τt−1)p(τt−1|It−1,Z1:t−1)

Generation of a command, involving a decision function:

p(Ut|Z1:t−1) =
∑
It,τt

p(Ut|It, τt)p(It, τt|Z1:t−1)

D(p(Ut|Z1:t−1)) =
∑
It,τt

D(p(Ut|It, τt))p(It, τt|Z1:t−1) =
∑
It,τt

υItτtp(It, τt|Z1:t−1)

Update due to observations, involving the observation model:

p(It, τt|Z1:t) ∝ p(Zt|It, τt)p(It, τt|Z1:t−1)

Acknowledgements: European projects: Noptilus (FP7-270180), myCopter (FP7-266470), NIFTi (FP7-247870); Willow Garage

